APPROXIMATE ANALYTICAL TEMPERATURE CALCULATION
FOR A FUEL ROD WITH DEFECTS IN THE CONTACT LAYER
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A solution has been obtained in infinite~-series form for the two-dimensional thermal con-
duction equation for a rod with boundary conditions of the third kind and a heat-transfer
coefficient varying around the perimeter,

This type of fuel rod (Fig. 1) consists of an active core 3, protective sheath 1, and a contact layer of
fusible metal 2; defects of various types can arise, such as gas bubbles, breaks in the contact layer, or
exfoliation, all of which lead to deterioration in the heat transfer from the core [1]. It is of some interest
to examine the overheating arising from defects relative to the nominal temperature distribution.. There
are various analytical methods of solving this problem. For instance, a solution can be found {2] by varia-
tional methods, or else [3] as an infinite series meeting the boundary conditions at individual points.

We give below an approximate analytical method that has some similarity with that of [3], while having
some differences: the method of transforming the boundary condition is novel, and the mode of solution
construction is more logical.

The mathematical problem is then formulated as follows: the volume heat production rate in the core
is constant in the height and cross section, while being zero in the sheath and contact layer. The physical
parameters of all the materials are constant, while the heat-transfer coefficient for the cooled surface of
the sheath is constant at all points., Also, the defects are infinitely long, and the axial and tangential com-
ponents in the heat flux in the sheath are negligibly small by comparison with the radial component. The
contact layer and sheath are incorporated in the problem as a thermal resistance by modifying the heat-
transfer coefficient, Figure 2 shows the calculation scheme, where the two-dimensional steady-state
temperature distribution is described by
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The rod temperature is reckoned from the mean temperature of the cooling surface,
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Fig. 1 Fig. 2
Fig, 1. Cross section of rod with defect in contact layer: 1)
sheath; 2) contact layer; 3) core; 4) defective zone.

Fig. 2. Calculation scheme for rod with defect: 1) core; 2)
defective zone (impaired heat transfer).

The temperature distribution in the rod defect is sought a8 the sum of the nominal distribution ty
and the superheating ¢ due to the defect, i.e.,

t=1,~ 9. ©)
Then ty is defined by
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The specific heat flux at the surface of the defect-free core is denoted by q:
Oefp = 4. ‘ (9)
We substitute (6) into (1)-(3) and use (7)~(9) to get a system of equations for 4:
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Then under these conditions the task of finding the temperature distribution in the fuel rod amounts to
finding the temperature distribution in a cylinder free from heat sources with in addition a constant heat
flux near the defect, the heat being lost from the entire surface, but with different heat-transfer coeffi-
cients in the defective and perfect parts.

We perform an identical transformation on the boundary condition of (12) by adding and subtracting
the expression for ae:
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and from (13) we have
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TABLE 1. Results for ¢ for ag =0, gq=7/2, and ¢ =0
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This transformation means that the heat is now transferred from the surface of the cylinder with a single
heat-transfer coefficient; it is true that then the cylinder surface receives an unknown heat flux, which is

a function of the unknown temperature,
We put (10), (11), and (15) in dimensionless form:

- ( IR s I
e a0 do /= p* Og¢? !
. 08
— ———- == B0 = ] and R
3o for P ¢ > gy
— P By BL o p=lamdg< gy
oo g
where
* e
H = ﬁ.IB:aeR; p:.:.L;_LL_.: 18
qla’_e }\,3 R q —‘_&
o

We expand the unknown heat flux g*/q as a Fourier series:
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where K = 7/ ¢q, and we derive the distribution of the temperature ¢ (Fig. 3) first of all from the first

term in (20) and then from the second, and so on.

a7

(18)

(19)

20

The distribution of ¢ arising from the constant component g, is found from (17)~(19), with (19) taking

the form
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A Fig, 3. Surface temperature of core for ¢4
2 = 1/2 and aeR/ A5 of: 1) 0.077; 2) —0,622;
3) —1.23. The broken lines are from ana-
lytical calculation, while the solid lines

are from numerical solution,
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This problem is solved by separating the variables
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We find the distribution of § due to the second term in (20) by variable separation using the conditions of
(17)=(19); the boundary condition of (19) takes the form
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apart from m = nK/2, where m is an integer,

We combine (22) and (24) to get the superheating of the defective rod in terms of the unkmown Fourier
coefficients:
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If the size of the defect is such that m = nK/2 is impossible, then the term [2anB/K(nK + 2B)]cosn(K/2) ¢
should be omitted,

We find the unknown coefficients g, and ap from the solution to a system of p + 1 equations, which is
derived from
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and satisfy this with p + 1 different values for @, i.e., for ¢ = ¢i = i(¢d/p), where i = 0-p and p is the
number of harmonics in the expansion of the unknown heat flux.

Table 1 gives results on § derived with an M-20 computer for ok of 0 and ¢ of 7 /2; it is clear that
it is sufficient to take 8-10 harmonics in order to obtain reasonably accurate results for values of B rang-

ing from 0.1 to 100,



For comparison, we calculated the temperature distributions for the same conditions for oy of 0
and ¢g of 7 /2 by numerical methods using an M-20 computer,

The results show that this method of calculating the temperature distributions in rods with defects
allows one to datermine this for a range in aeR/ 23 from 0,01 to 100 with an accuracy sufficient for engi-
neering calculations,

This method also enables one to calculate a three-dimensional temperature distribution due to a
defect of finite size, but the working formulas are rather lengthy,
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NOTATION

are the current radius, angle, and temperature calculated from mean liquid temperature;
is the angle determining dimensions of defective part of perimeter;

are the radius of core, jacket thickness, and confact layer thickness;

are the thermal conductivity of materials of jacket, contact layer, and core;

is the heat-transfer coefficient between fuel rod and cdoling liquid;

is the equivalent heat-transfer coefficient between liquid and sound part of core perimeter,
incorporating thermal conductivity of contact layer and jacket;

is the thermal conductivity of defect;

is the equivalent heat-transfer coefficient between liquid and defective part of core peri-
meter, incorporating thermal conductivity of contact layer of jacket and defect;

a dimensionless complex number;

is the specific heat production rate,
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